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Equivalence of path dependence and gauge dependence 

Kuo-Ho Yang 
Physics Department, St Ambrose College, Davenport, Ia 52803, USA 

Received 1 1  September 1984 

Abstract. The equivalence of path dependence and gauge dependence is established by 
showing that, for every set of the path dependent expansion coefficients of a wavefunction, 
there exists one identical set of the conventional, gauge dependent expansion coefficients 
of a wavefunction in another gauge. This equivalence is further demonstrated through 
simple examples of a quantum particle interacting with a classical radiation field in the 
dipole approximation. 

1. Introduction 

Recently Feuchtwang et a1 (1982, 1984a, b) and Kazes et a1 (1983), in an effort to 
understand the A e p  versus r . E  controversy raised by Lamb (1952) and the more 
fundamental question of gauge transformations and gauge invariance in quantum 
mechanics, rediscovered the path dependent procedure ( PDP) of constructing transition 
probabilities, first formulated by DeWitt (1962). They proposed the PDP in their 1982 
paper, and used it to criticise the gauge invariant formulation (GIF) (Yang 1976a), 
apparently unaware that the PDP suffers from the ambiguity of path dependence (Lee 
et a1 1983) and that the PDP and the closely related path-averaging procedure had been 
examined in Yang (1976a) in which the GIF was first proposed. Later in Kazes et a1 
(1983) and Feuchtwang er a1 (1984a, b) they realised the path dependence of the PDP, 
but insisted that their transition probabilities were gauge independent and path 
dependent. 

The insistence that a quantity can be simultaneously gauge independent and path 
dependent seems to imply that the ‘path property,’ whatever it may be, is a fundamental 
property in quantum mechanics. This would be of great interest to theoretical physics, 
especially concerning the fundamental symmetry properties of the Schrodinger 
equation. Furthermore, the insistence that path dependent quantities can be interpreted 
as transition probabilities seems also to suggest that, somehow, one path can be 
experimentally distinguished from another. (Feuchtwang et a1 and Kazes er al take 
the traditional point of view that gauge dependent quantities cannot be experimentally 
measured and hence cannot be interpreted as transition probabilities.) 

The history of the path dependent procedure is quite interesting. DeWitt (1962), 
in a dispute with Aharonov and Bohm (AB) on their interpretation of the significance 
of potentials in the AB effect (Aharonov and Bohm 1959, 1961), first constructed what 
he called the gauge independent wavefunction and potentials, apparently unaware of 
their path dependence. (This dispute was settled on the observation of Aharonov and 
Bohm (1962, 1963) that the AB effect could be regarded as a result of either the local 
interaction of charges with potentials or the nonlocal interaction of charges with fields.) 
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DeWitt’s gauge independent wavefunction and potentials were later shown to be path 
dependent by Mandelstam (1962) who also used the formalism to quantise electromag- 
netic fields. 

The first work to hint at a relation between gauge dependence and path dependence 
was by Belinfante (1962), who conjectured that a path was just a ‘gauge’. Because of 
this insight he set out to devise the path averaging procedure, in an attempt to get rid 
of this path dependence. By averaging the path dependent potentials over the paths 
he chose, he obtained the potentials in the Coulomb gauge. Three years later, Rohrlich 
and Strocchi ( 1969, who were not satisfied with Belinfante’s choice of noncovariant 
paths, applied the procedure to average over covariant paths. They obtained the 
potentials in the Lorentz gauge. 

These two studies show a very important point. It is that the path dependent 
potentials cannot be gauge independent. This is because all quantities used in the 
path averaging are functions only of the electromagnetic fields and paths. If the path 
dependent potentials are truly gauge independent, the results from the path averaging 
must remain gauge independent and cannot be expressed in terms of potentials in the 
Coulomb or Lorentz gauge. 

Because the path dependent potentials cannot be gauge independent, it then follows 
from consideration with the Schrodinger equation that the path dependent wavefunc- 
tion cannot be gauge independent. Furthermore, since the eigenfunctions of the 
unperturbed Hamiltonian have neither gauge nor path dependence, the expansion 
coefficients of the path dependent wavefunction in this basis set of functions therefore 
cannot be gauge independent. 

Another point of value also developed from the dispute between DeWitt and AB. 
Aharonov and Bohm (1962, 1963) commented that DeWitt’s formalism did not funda- 
mentally solve the gauge problem in quantum mechanics, but only put it in a different 
disguise. 

The purpose of this paper is to prove the complete equivalence of the gauge 
dependence and the path dependence. In 0 2, we first review the gauge dependence 
of the conventional expansion coefficients of the wavefunction. (All necessary proofs 
can be found in the references quoted therein.) Then, we review the Amp versus r -  E 
controversy and point out its underlying reasons. In 0 3,  we first review the path 
dependent procedure as currently used by Feuchtwang et al. Then we establish the 
complete equivalence of the path dependence and the gauge dependence by showing 
that, for every set of the path dependent expansion coefficients of a wavefunction with 
an arbitrary choice of the path, there exists one identical set of the conventional, gauge 
dependent expansion coefficients of a wavefunction in a different gauge. The wavefunc- 
tion, Hamiltonian and potentials in this other gauge will be constructed from the 
original wavefunction, potentials and choice of path. This equivalence is later demon- 
strated in three simple examples of a charged particle in eracting with a classical 
radiation field in the dipole (i.e., long wavelength) approximation. Finally, we present 
our conclusions in 8 4. 

2? The conventional interpretation and the A s p  versus r -  E controversy 

In this section, we shall briefly review the conventional approach to the problem of 
constructing the quantum mechanical probability amplitudes and probabilities, which 
is what Lamb (1952) called ‘the usual interpretation’, and how it leads to the A - p  
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versus r e  E controversy. The underlying reason for this controversy has now been well 
understood. It is because the conventional expansion coefficients are gauge dependent, 
or stated differently, the 'unperturbed' Hamiltonian is, in general, not a true physical 
quantity (Yang 1976a, 1982a, b, Cohen-Tannoudji et al 1977, Kobe and Smirl 1978, 
Park 1979, Lee and Albrecht 1983). Nevertheless, we shall review its basic contents 
here for our discussion of the path dependent method recently rediscovered by 
Feuchtwang et a1 and Kazes et al. 

2.1. The conventional interpretation 

Let us assume a nonrelativistic, spinless quantum particle of mass m and charge e 
subject to an electrostatic field Eo(*)  = -V Vo(r) (e.g., the Coulombic field due to the 
nuclear charge) and a laser radiation field E ( r ,  t )  and B(r,  t ) .  If we use two sets of 
potentials (Ag, Q g )  and (Ag', W') to represent the laser field, then 

These two sets of potentials are then related by a gauge transformation: 

Ag'=Ag+V,yg'g(r, t ) ,  Og' = + g  - c-' a p ' g (  r, t ) /a t .  (2.2) 

The Schrodinger equations for these two gauges are: 

ih  a V / a t  = H g Y g ,  H g  =(p-eAg/c)2/2m+eVo+e@g; (2.3) 

ih a V ' / a t  = H g ' V ' ,  H g ' = ( p - e A g ' / c ) 2 / 2 m + e V o + e @ g ' .  (2.4) 

It then follows that 

V ' ( r ,  t )  = U g ' g V ( r ,  t ) ,  Ug'"t) = exp[ieXg'g(r, t ) / c h ] .  (2.5) 

To review the conventional interpretation, we first construct the 'unperturbed' 
Hamiltonian Ho by 

Ho = p2/2m + eVo, (2.6) 

and then its eigenvalues { E ~ }  and the associated orthonormal and complete (assumed) 
set of eigenfunctions { q5;( r ) }  by 

Ho49(*) = Ejdy(r), 4;) = a j k *  (2.7) 

Note, the superscript '0' in the eigenfunctions is to indicate that these functions have 
no dependence on the gauges chosen for the Hamiltonians. The conventional interpre- 
tation consists of constructing the expansion coefficients {cy( t ) }  for \Irg and {c,P'( t ) }  
for V' by 

and interpreting these expansion coefficients as probability amplitudes for finding the 
particle in the eigenstates of the 'unperturbed' Hamiltonian Ho. 

There are numerous ways to understand the gauge dependence of these conventional 
expansion coefficients. Here, we only discuss three, which complement one another. 
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First, the 'unperturbed' Hamiltonian Ho is in general a nonphysical quantity (Cohen- 
Tannoudji et a1 1977) and it is not form invariant under gauge transformations, 

Ug'gHo( U g ' g ) +  # Ho. (2.10) 

Second, the gauge dependence is shown explicitly through the mathematical expression 
(Kobe and Smirl 1978, Lee and Albrecht 1983) 

(2.1 1) 

We now discuss the third way, which is perhaps most relevant to our later discussion 
of the path dependent method. By definition, all electromagnetic potentials are gauge 
dependentt. Hence, all wavefunctions are gauge dependent and there does not exist 
a set of 'gauge independent' electromagnetic potentials. Because all wavefunctions 
are gauge dependent, and because the eigenfunctions of the 'unperturbed' Hamiltonian 
have no gauge dependence, it then follows that the conventional expansion coefficients 
are gauge dependent. As is now clear from our notation, the {cf( t ) }  carry with them 
faithfully all the gauge dependence of the wavefunction V g ( r ,  t ) .  This gauge depen- 
dence of the conventional expansion coefficients is what causes the A s p  versus r - E  
controversy, first raised by Lamb (1952). 

2.2. The A . p  versus r . E  controversy 

In his pioneering work of the measurement of the fine structure spectrum of the 
hydrogen atom, Lamb (1952) discovered that, when an RF field was used to quench 
the metastable state, different forms of the interaction Hamiltonian predicted different 
quenching cross sections. He investigated the two familiar forms of interaction Hamil- 
tonian in the long wavelength and lowest-order approximation in the radiation gauge 
(R-gauge) and in the electric-field gauge (E-gauge). Under this approximation of the 
fields ( E ( r ,  t )  = E ( 0 ,  t )  and B ( r ,  t )  = 0 ) ,  these two sets of potentials are: 

AR(r, t )  = AR(O, t ) ,  ~ ~ ( r ,  t )  = 0, (2.12) 

AE( r, t )  = 0, O E ( r ,  t ) =  - r .E(O,  t ) ,  (2.13) 

with 

E ( 0 ,  t )  = - c - '  dAR(O, t ) / d t .  (2.14) 

Lamb then solved for the conventional expansion coefficients { cj"( t ) }  and { cF( t ) }  
in these two gauges, using the two-state approximation, the rotating -wave approxima- 
tion and with decay constants added phenomenologically to simulate the spontaneous 
emissions. By comparing these two sets of solutions with his quenching curves, he 
concluded that 'the usual interpretation' of probability amplitudes was correct only in 
the E-gauge and that the expansion coefficients { cp( t ) }  in the R-gauge did not generate 

t This is because the word 'gauge' is used to designate a particular procedure by which a particular set of 
potentials is constructed from a given field. Thus, the word 'gauge' is simply a convenient and necessary 
mathematical indexation in sorting out a particular set of potentials from the many-to-one correspondence 
between all potentials for a given field and the field. Hence every set of potentials must carry with it an 
index or gauge to show how it is constructed and also to distinguish it from all others. For a discussion on 
this point with similar implications, see Cohen-Tannoudji et a1 ( I  977). For further information on electromag- 
netic gauges and their implications in the propagation and other properties of potentials, see Brill and 
Goodman (1967), Jackson (1975), Yang (1976b, 1981) and Sorg (1981). 
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the correct (meaning experimental) results. This conclusion of Lamb has stimulated 
many papers trying to explain or counter-explain his observation. For a list of papers 
involved in this controversy, see Yang (1982a). For a gauge invariant explanation of 
Lamb’s result, see Yang (1976a), Kobe and Smirl (1978), Park (1979) and Lee and 
Albrecht (1983). See Cohen-Tannoudji et a1 (1977) and Yang (1982b) for the funda- 
mentals of gauge invariance. 

Just from the knowledge in 0 2.1, one can understand Lamb’s result. It is because 
the conventional expansion coefficients are gauge dependent. Hence, the interpretation 
of these coefficients as probability amplitudes cannot be valid in more than one gauge. 
Lamb’s observation only emphasises this point. What is surprising, however, is that 
there even exists a gauge (the E-gauge) in which the gauge dependent conventional 
interpretation is physically correct. In order to fully understand this point, one must 
refer to the relevant literature on gauge invariance quoted earlier. 

3. Gauge dependence of the path dependent procedure 

In their quest for a procedure of constructing the quantum mechanical transition 
probabilities that can explain Lamb’s results, Feuchtwang er a1 have rediscovered the 
path dependent procedure. This path dependent method was first formulated by DeWitt 
(1962) in a slightly different form. The method was later examined carefully by 
Mandelstam (1962), Belinfante (1962), Rohrlich and Strocchi (1969, Yang (1976a) 
and, more recently, Lee et a1 (1983). All these authors have found that the method 
suffers from the ambiguity of path dependence. As a consequence of this path 
dependence, the transition probabilities cannot be unique even for a single given gauge. 
(See also Yang (1976a) for a discussion on the path averaging method used by Belinfante 
and by Rohrlich and Strocchi in their attempt to eliminate this path dependence.) 

Belinfante (1962) pointed out in his paper that path dependence was just a ‘gauge’ 
dependence (unfortunately without the necessary mathematical proof). In this section, 
we shall prove exactly Belinfante’s insight that path dependence is gauge dependence. 
The proof will be illustrated with explicit examples using the potentials in (2.12) and 
(2.13). 

3.1. Review of the path dependent procedure 

Here, we review the path dependent procedure of Feuchtwang et a1 (1982, 1984a, b) 
and Kazes et al (1983). For any arbitrary gauge g with potentials ( A g ,  Qg), they first 
construct the phase function ~ ‘ ( r ,  t )  by 

( r . t )  

( r , , t ,  1 
77% f )  = At[x(y)l  dx,(r)  

( r , f )  

- J ( r , . f z j  
{ A g [ 4 y ) ,  ~ ( Y ) I * ~ s ( Y )  - c @ ’ [ s ( Y ) ,  4 ~ 1 1  d T ( Y ) I ,  (3.1) - 

where y is a parameter designating a particular path starting from (ri, t i )  and ending 
at (r ,  t ) ,  along which the line integral of (3.1) is to be evaluated, and r is a collection 
of relevant parameters: 
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The phase in (3.1) is then used to construct a phase-shifted set of basis functions 
from the eigenfunctions of the unperturbed Hamiltonian by 

d?(r, t )  = vrd;(r), wr = exp(ieTr/ch). (3.3) 

This set of complete basis functions is then used to expand the wavefunction W ( r ,  t ) ,  
resulting in the expansion coefficients { bf‘( t)}: 

(3.4) 

Feuchtwang et a1 then interpret these expansion coefficients as probability amplitudes 
for finding the particle in the states defined by (3.3). 

Their claim is that the expansion coefficients { bfr( f)} are gauge independent but 
path dependent. This path dependence (not realised in a previous paper (Feuchtwang 
er a1 1982)) can be seen easily since the closed line integral, 

I = Ap,[X(?)l dX,(?), I 
does not vanish for an arbitrary field and for an arbitrary closed loop. In §§ 3.2-6, 
we shall translate this path dependence into something we know better, the gauge 
dependence. 

3.2. Connection to the conventional procedure 

We now show the equivalence of the path dependence and the gauge dependence. 
First, we rearrange (3.4) in a slightly different form: 

bfr(  t )  = ( u ~ + J w ( ~ ) )  = ($;I( u‘-)+Y~( r)). (3.5) 

Thus, it is obvious that the path dependent coefficients {b?”( t ) }  are identical to the 
conventional gauge dependent expansion coefficients { c,”‘( t)} defined by 

cj”‘-(t) = (4j’ lqgr( t ) ) ,  V r ( r ,  t )  = ( Ur)+W(r, t ) .  (3.6) 

c,”‘( t )  = bjp‘( t), 

Hence, by construction, 

for all j and t. (3.7) 

This qgr(r,  t )  is a true wavefunction since it satisfies the Schrodinger equation in the 
gauge g r  (note: we now use gT as a single gauge index): 

ih. dYgr /d t  = HgrYgr, 

where the potentials Agr and Wr in the gauge gr are 

Hgr = ( p  - eAgr/c)*/2m + eV,+ eWr,  (3.8) 

Agr = Ag -v  ??‘-3 agr = c~~ + C - I  a$/at. (3.9) 

The essence of our above finding is as follows. If we start from the arbitrary gauge 
g, the conventional procedure will generate the conventional expansion coefficients 
{cf( t ) } .  But the path dependent procedure will generate the conventional expansion 
coefficients {c?r(tj} in the gauge gr.  Thus, the path dependent procedure does 
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absolutely nothing different from the conventional procedure except shifting the depen- 
dence on one gauge to the dependence on another different gauget. There is one more 
defect in the path dependent procedure that is not present in the conventional pro- 
cedure. It is that the conventional procedure uniquely defines the expansion coefficients 
for any given gauge, whereas the path dependent procedure cannot uniquely define a 
single set of expansion coefficients for a given gauge because of the freedom in the 
choice of path along which the phase function T~ is to be evaluated. In the following, 
we shall use the potentials in (2.12) and (2.13) to illustrate our point just concluded. 
Note, there is no magnetic field implied in these two sets of potentials. Therefore, the 
following examples also prove that the path dependent procedure is invalid for cases 
with B = 0 .  (When B Z O ,  it is quite obvious that the phase function in (3.1) is path 
dependent.) 

3.3. Example in R-gauge 

We now work in the R-gauge with the potentials listed in (2.12). First, we choose the 
starting point ( r i ,  ti) to be (0,O). Next, the path is chosen to consist of two straightline 
segments from (0,O) to (r, t )  as indicated symbolically by 

yl= (090) + (0, t )  + ( 4  t )  

where the time-like leg, (0,O) + (0, t ) ,  has no effect here since Q R  = 0. Thus 

= W, Y ,  man. 
Substituting (3.11) into (3.1), we get 

Tr'(r, t )  = 

Consequently, from (3.9) and (3.12), 

d t r -AR( t r ,  t )  = r-AR(O, t) .  lo' 
ARr'(r, t )  =0, QRr(r, t )  = -r.E(O, t ) .  

(3.10) 

(3.1 1) 

(3.12) 

(3.13) 

Thus, we see that the path dependent procedure with the choice of (3.10) and (3.11) 
in the R-gauge produces the conventional expansion coefficients in the E-gauge. 

3.4. Example in E-gauge 

We now work in the E-gauge with the potentials specified in (2.13). Again we choose 
(ri, t,) to be the four-origin (0,O). This time, however, the path is chosen to be of two 
straightline segments as indicated below: 

(3.14) 

Note, since A E  = 0 the space-like leg (0,O) + ( r ,  0) has no effect in the E-gauge. Finally, 
we have 

(3.15) 

t There is a simpler way to understand the gauge dependence of the {blgr}. If they are gauge independent 
as claimed, then Ygr must be a gauge independent wavefunction (because the {4:} have no gauge 
dependence) and Ifgr a gauge independent Hamiltonian. It then follows that Agr and Wr must be gauge 
independent potentials, a conclusion contradicting the basic definition that all electromagnetic potentials 
are gauge dependent (see 5 2.1). Note, gauge independent potentials exist if and only if the correspondence 
between potentials and fields is one-to-one. 

y" = (0,O) + ( r ,  0) + ( r ,  t ) .  

r" = {E, y", (o,o)l. 
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Again, from (3.1) and (3.15), 

d7r .E(0,7)=-r-AR(0,  t ) ,  (3.16) 

-=O. From where, as indicated above, we have assumed that AR(O, t ' )  vanishes for all t' - 
(3.9) and (3.16), we get 

AEr"(r, t )  = AR(O, t ) ,  QEr"(r, t )  = 0. (3.17), (3.18) 

Thus, we see that the path dependent procedure in the E-gauge with the choice of 
(3.14) and (3.15) generates the conventional expansion coefficients in the R-gauge. 

3.5. Implication of (ri, t i )  in gauge transformations 

We now explore the implications of the starting point of the path integral in the relation 
between path dependence and gauge transformations. First, we choose the following 
parameters: 

(r,, t i )  = ( a y ,  t ) ,  real a, (3.19) 

y'" = ( a r ,  t )  + ( r ,  t ) ,  (3.20) 

r"' = { R, yf", (ar,  2 ) ) .  (3.21) 

Note, the above notation reads as follows: 'The path dependent method is to be applied 
in the R-gauge, with the path being a straight line connecting the starting point (ar,  t )  
to the final point (r, t) . '  

With this choice, we then have 

T r ( r ,  t ) =  d[r.AR([r, t )= ( l - a ) r -AR(O,  t ) .  1: (3.22) 

Hence, the path dependent coefficients are exactly the conventional coefficients in the 
gauge g P  with potentials 

A R r (  r, t )  = aAR(O, t ) ,  O R r ( r ,  t )  = - ( I  - a)r.E(O, t ) .  (3.23) 

Finally we note that if we choose the path in (3.20) with a = O  and apply it to the 
path dependent procedure in any arbitrary gauge with the exact potentials, the path 
dependent expansion coefficients will be identical to the conventional expansion 
coefficients in the multipolar gauge (Power and Zienau 1959, Fiutak 1963). Thus, the 
multipolar gauge formulation, together with the definition of the conventional 
expansion coefficients, can be regarded as a special case of the path dependent 
procedure. At this moment, one should also recall that the potentials in the multipolar 
gauge are gauge dependent, despite the fact that they can be explicitly expressed only 
in terms of fields. 

3.6. No field case 

We now show that in the case where both E and B vanish, the path dependent 
procedure is also ambiguous. Since E = B = 0, there exists a scalar function A(r, t )  
such that A,' = V A  and W' = -c-' ah/a t .  If we now choose r = {A, y"', ( a r ,  t ) }  where 
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a and y"' are those in (3.19) and (3.20), then 

qr ( r ,  t )  = [:r ds-VA(s, t )  = A(r, 1 )  - A ( q  t ) .  (3.24) 

Thus, the path dependent coefficients are the conventional expansion coefficients in 
the gauge A r  with potentials 

A,'r( r, t )  = VA( ar,  t ) ,  QAr(r, t )  = -e-' dA(ar ,  t ) / a t ,  (3.25) 

which shows that the path dependent method does not produce the physically correct 
probabilities except when a = 0. 

4. Conclusions 

We have shown that the path dependent procedure generates the conventional gauge 
dependent expansion coefficients. This procedure does absolutely nothing different 
from the conventional procedure except shifting the dependence on one gauge to that 
on another. To do just that, the path dependent method goes through all the complicated 
mathematics, all of which can be accomplished by the conventional procedure with 
just a simple gauge transformation. 

The main reason why the path dependent procedure behaves in this way is in its 
use of the basis functions { c$;( r, t ) }  defined in (3.3). This basis set differs from the set 
of eigenfunctions {4p(r)} of the unperturbed Hamiltonian in (2.7) only by a gauge 
transformation. It then follows from the discussions given by Yang ( 1976a, 0 XI C, 1982a, 
§ §  3-5) that the expansion coefficients defined using {b;'(r,  t )}  and the wavefunction 
will inherit all the mathematical and physical problems of the coefficients defined using 
{4:} and the wavefunction. 

The deeper problem of the path dependent procedure lies in its lack of clarity in 
what operator is being measured when the { bfr( t)} are interpreted as probability 
amplitudes. According to the basic postulates of quantum mechanics (e.g. Messiah 
1966), the interpretation of the { b,gr} as probability amplitudes requires that the operator 
being measured is H:,  where 

H: = u~H,(  u ~ ) +  = ( p  - e ~ q ~ / c ) ~ / 2 m  + ev,, 

H:4;(r, t ) =  &]$;(r, f). (4.2) 

(4.1) 

Moreover, this interpretation also specifies that the values resulting from individual 
measurements are the eigenvalues { E ] }  and the average (mean) value of all measure- 
ments is 

(4.3) 

Thus, the {I bfr( t )12}  are gauge independent if and only if d(E"r)/dt is gauge independent, 
where 

(4.4) 

As can be expected from our discussions in this paper, one can easily show that, in 
general, not only is ( d H i / d t ) p  gauge dependent, but also it does not have any 

- 
& g r  = 2 &11b,Br(t)12 = (W( t ) lH:pPyf ) ) .  

1 

- 
d(sgr ) /d t  = (V/(dH:/dt) ,g/V) = (V((aH:/at + [ H E ,  Hg] / ih ) /V) .  
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discernible physical behaviour. That is, the operator H i  is a purely mathematical 
object, and it does not represent any physically measurable quantities under general 
conditions. 
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Note added in proot Both sides now agree that equation (23) of Feuchtwang et a1 (1984a) is inconsistent 
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